If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-70x+29=0
a = 25; b = -70; c = +29;
Δ = b2-4ac
Δ = -702-4·25·29
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-20\sqrt{5}}{2*25}=\frac{70-20\sqrt{5}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+20\sqrt{5}}{2*25}=\frac{70+20\sqrt{5}}{50} $
| 2/5u=-6 | | 2x-14=27 | | 29=x/4+12 | | 85=5x-15 | | 5(t-3)+7t=4(3t-3)-10 | | —48=6(x-3) | | 16x+19(1.2)=478 | | 16x+19(1.2)=488 | | 3x+68/3=x+6 | | 6(x-5)=24x-30 | | 7(-2k+40-6=7k-20 | | 3y+10=19-(y-3) | | 4(1+x)+2x=-3(x+1) | | 3x−12=21 | | 16(x-3)=4(8x+8) | | 4(t-4)+8t=6(2t+4)-10 | | 7x+1=5+3x | | 5÷x=30 | | 0=-70-19t+4.9t^2 | | 0=-70-17t+4.9t^2 | | 11x−5=9(x+9) | | 8+p/3=13 | | 7x+18=9x+13 | | 11x-5=9(x+9) | | 45=-23x+24 | | 0,25(5+x)+0,75x(x+1)=5 | | 8x-4(x-6)=2(x-3)+4 | | 2x2+2x-12=-8 | | 2z/9-2=-3 | | Y=120x+340 | | 16w+10/3=3 | | 6b-23=39 |